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Abstract

I shall argue that there is no such property of an event as its “prob-
ability.” This is why standard interpretations cannot give a sound
definition in empirical terms of what “probability” is, and this is why
empirical sciences like physics can manage without such a definition.
“Probability” is a collective term, the meaning of which varies from
context to context: it means different—dimensionless [0, 1]-valued—
physical quantities characterising the different particular situations. In
other words, probability is a reducible concept, supervening on phys-
ical quantities characterising the state of affairs corresponding to the
event in question.

On the other hand, however, these “probability-like” physical quan-
tities correspond to objective features of the physical world, and are
objectively related to measurable quantities like relative frequencies of
physical events based on finite samples—no matter whether the world
is objectively deterministic or indeterministic.

Key words: probability, interpretation of probability, branching space-
time, quantum probability

Introduction

One of the central issues in the recent branching space-time literature is how
to integrate the concept of single-case probability into the modal-causal de-
scription of the world. (Weiner and Belnap 2006; Müller 2005.) Investigating
this problem within the formally rigorous framework of branching space-time
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theory immediately raises the old fundamental question about interpretation
of probability. Let me demonstrate the essence of the problem.

Consider the following typical probabilistic assertions: In quantum me-
chanics,

p(a) = tr
(
P̂aŴ

)
(1)

asserts that the probability that the value of a physical quantity falls into a
Borel set a is equal to tr

(
P̂aŴ

)
where Ŵ is the state operator of the system

and P̂a denotes the corresponding projector. Formula

p
(
{Ni}i=1,2,...

)
=

(
∑

i Ni)!∏
i Ni!

(2)

in statistical mechanics asserts that the probability that the micro-

distribution is equal to {Ni}i=1,2,... is equal to (
P

i Ni)!Q
i Ni!

. The meteorologist
claims that the probability that it will be raining tomorrow is

p (raining) = 0.8 (3)

A simple probabilistic description of a coin-flip claims that the probability of
getting Heads is

p (H) =
1
2

(4)

Let us compare these assertions with other scientific assertions. The
electric field strength of a point charge q:

E(r) = q
r− rq

|r− rq|3
(5)

The time tag of an event A:

t(A) = 43s (6)

In case of (5) and (6) it is clear what the formulas assert. For example,
on the left hand side of (6) we have a known, previously empirically defined
physical quantity, and (6) asserts that the value of this quantity is equal to
43s. Similarly, in (5), when we assert that the static electric field strength
of a point charge is q

r−rq

|r−rq |3
, we have a previously defined physical quantity,

electric field strength, and (5) expresses a contingent fact about this quantity.
It is far from obvious, however, what formulas (1)–(4) actually assert.

What quantities are on the left hand sides of (1)–(4)? What is “probability”?
In my views, “interpretation of probability” means—or ought to mean—the
answering this question. For the aim of interpretation of probability is not,
as many believe, to assign meaning to the mathematical terms “probability”
or “probability measure” of, say, Kolmogorov’s probability theory. For, when
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we define the notion of electric field strength in empirical terms, our aim
is to introduce an objective characteristic of electromagnetic field, but not
to assign meaning to the mathematical term “vector field”. So the right
epistemological order would be something like this:

1. We have to define—in empirical terms—what “probability of an event”
means on the left hand side of (1)–(4) and in other similar scientific
assertions.

2. From the knowledge of (1)–(4) and other similar facts, acquired by a
posteriori means, we ascertain the basic laws satisfied by the quantity
we previously defined and called “probability”.

3. Finally, we may conclude—again, on the basis of our observations—
that probability can be conveniently described by the mathematical
concept called “probability” in Kolmogorov’s “probability theory”.

Although all standard interpretations—the classical, the frequency, the
propensity, and the subjective interpretations—can grasp something from
our intuition about probability, there is a consensus that none of them can
provide an ultimate definition of what probability is. (Earman and Salmon
1992; Hájek 2003.) According to this consensual conclusion we have the
following

Stipulations

(A) Probability is not the ratio of cases favourable to the event in question
over the total number of (equally possible) possibilities.

(B) Probability is not relative frequency on a finite sample.

(C) Probability is not limiting relative frequency.

(D) Probability is not propensity.

(E) Probability is not degree of belief.

Then what is probability? And how is it possible then that physics and other
empirical sciences apply a formal (mathematical) theory of probability, with-
out noticing a problem arising from this unanswered fundamental question?
In this paper I shall make an attempt to develop a new interpretation of
probability, which may perhaps throw light on this matter.
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Figure 1: A gun is hinged in such a way that it can fire uniformly at a round
target area, radius ρ, with an inflated balloon, radius r, attached to the front
of the target

‘No-probability’ Interpretation of Probability

The key idea of my proposal, which I call ‘no-probability’ interpretation of
probability, is that there is no such property of an event as its “probability”.
If there is any reason to use this word, “probability” is merely a collective
term: its meaning varies from context to context. Moreover, these context-
dependent meanings reduce the concept of “probability” to ordinary physical
quantities. This is why standard interpretations fail to give a sound definition
of probability, and this is why empirical sciences like physics can manage
without such a definition.

From philosophical point of view, my argument will be based on the
following two general principles: One is a kind of verificationist theory of
meaning, the second is a (non-mathematical) indispensability argument.

I shall rely on the verificationist theory of meaning in the following very
weak sense: In physics, and in other empirical sciences, the meaning of a
term standing for a quantity which is supposed to characterise an objective
feature of (physical) reality is determined by the empirical operations with
which the value of the quantity in question can be ascertained.

The indispensability argument claims that we ought to have ontological
commitment to all and only the entities that are indispensable to our best
scientific theories. Mutatis mutandis, we ought to have ontological commit-
ment to all and only the features of reality that are indispensable to our best
scientific theories.

Consider the following example. A gun is hinged in such a way that it
can fire uniformly at a round target area, radius ρ, with an inflated balloon,
radius r, attached to the front of the target. (Fig. 1). What is the probability
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that the balloon will be burst (event A)?
The physicist’s standard answer to this questions is the following:

p(A) =
πr2

πρ2
(7)

We will not look at how the physicist arrives at this result. What is important
is that this equation does not, cannot, express a contingent fact of nature.
The right hand side of (7) is meaningful. It is an expression consisting of
known physical quantities. On the left hand side, however, p(A) is not a
known quantity which could be contingently equal to πr2

πρ2 . There is no way
to test empirically whether equality (7) is correct or not. Many believe
that this is possible by measuring the relative frequency of A and testing
that N(A)

N ≈ πr2

πρ2 . Beyond the problem that relative frequency N(A)
N has,

in general, nothing to do with πr2

πρ2 (see below), the main objection to this
argument is that probability is not relative frequency (Stipulation (B)–(C)).
So the only possible interpretation of equation (7) is that it is a definition
of p(A):

p(A)
def

=
πr2

πρ2
(8)

Note that physical quantity µ(...) = area of ...
πρ2 happens to be a “probabil-

ity like” quantity. It is a dimensionless normalised measure, satisfying the
Kolmogorov axioms.

In case of a completely different scenario, “probability” is defined as a
dimensionless normalised measure composed by completely different physical
quantities. For example,

p(a)
def

= tr
(
P̂aŴ

)
(9)

p
(
{Ni}i=1,2,...

)
def

=
(
∑

i Ni)!∏
i Ni!

(10)

Therefore, “probability”, at best, can be used only as a collective term
the meaning of which varies from context to context. To sum up:

Thesis 1 There is no such property of an event as its “probability.” What
we call probability is always a physical quantity characterising the state of
affairs corresponding to the event in question. “Probability” can be used only
as a collective term: it means different dimensionless [0, 1]-valued physical
quantities, or more precisely, different dimensionless normalised measures
composed by different physical quantities in the various specific situations.

For scientific practice, the most important question is how probability
is related to relative frequency. In our balloon example, we used the term
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Figure 2: If the size of the balloon is constant and the uniform distribution
of the shots on the target is provided then the relative frequency of event A
is approximately equal to πr2

πρ2

“probability” for the quantity πr2

πρ2 . The value of πr2

πρ2 is a definite number in
each individual experiment, so it is a meaningful notion for an individual
event. Imagine that we change the size of the balloon during the sequential
repetitions of the experiment, such that the sequence of relative frequencies
cannot converge to a limiting value. In this case, πr2

πρ2 has nothing to do with
the relative frequency of event A. But, consider the following particular case.
Let the value of πr2

πρ2 be constant and let the uniform distribution of shots
at the target be ensured (Fig. 2) by setting up the position of the gun with
a computer applying a suitable ergodic map. In this particular case, the
relative frequency of event A is approximately equal to “probability” πr2

πρ2 .
And this fact has nothing to do with probability-theoretic considerations. It
is a simple result of elementary kinematics. Generalising this observation,
we formulate our next thesis:

Thesis 2 The physical quantity identified with “probability” is not the limit-
ing value of relative frequency, and not even necessarily related to the notion
of frequency. In some cases, the conditions of the sequential repetitions of a
particular situation are such, however, that the physical quantity called “prob-
ability” in the given particular context is approximately equal to the relative
frequency of the event in question.

The physical quantity πr2

πρ2 is meaningful and has a certain value in every
single run of the experiment. Its existence and value are independent of
whether the laws of nature governing the gun firing and the path of the
bullets are deterministic or not.

Moreover, the relationship between πr2

πρ2 and the relative frequency of A
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(if there is such a relationship at all) is not influenced by the deterministic or
indeterministic character of the physical processes in question. The relative
frequency will be (approximately) equal to πr2

πρ2 independently of whether
the uniform distribution of the shots is ensured by means of a deterministic
ergodic process, or by means of an objectively random firing following a
uniform distribution.

In talking about objectively random firing following a uniform distri-
bution, it is necessary to be careful of a possible misunderstanding. One
must not think of a kind of “objective chance” of the gun firing in any par-
ticular direction being uniform. The problem is not with the “objectivity”
of this “chance”—due to the objectivity of the randomness—but with the
“chance” (probability) itself. Because there is no “chance” neither objective
nor epistemic; according to Thesis 1, the “probability” distribution of the gun
firing in the different directions means a dimensionless normalised measure
composed by ordinary physical quantities characterising the physical process
selecting the different directions—no matter if this process is deterministic
or not. Independently of the details of this physical process, the phrase “the
distribution of the directions is uniform” simply means that, say, the density
of the dots (number of dots/cm2) on the target is uniform. This is an or-
dinary physical statement about meaningful measurable physical quantities,
of the same kind as “this rigid rod is homogeneous”, and the likes. And, if
the distribution of the directions is uniform then(

p(A)
def

=
)

πr2

πρ2
≈ N(A)

N
(11)

no matter if the process in question is indeterministic or deterministic.
Similarly, neither the value of πr2

πρ2 nor the relationship (11) can be influ-
enced by anything related to our knowledge about the details of the process.
For example, if the uniform distribution of shots condition is satisfied, (11)
holds independently of whether we know the direction of the subsequent
shot, or not.

Finally, we have to emphasise that it is the real physical process that ac-
tually determines whether the distribution of the shots is uniform or not. We
must not suppose that the distribution is uniform, a priori, merely because
we have no information about how the directions of the consecutive shots
are determined and, on this basis, we have no reason to prefer one direction
to the other.

So, our last three Theses are the following:

Thesis 3 The value of the physical quantity identified with “probability” is
not influenced by the fact whether the process in question is indeterministic
or not. (And, of course, there is no reason to suppose that this value can be
only 0 or 1, merely because the process is deterministic.)
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Thesis 4 The value of the physical quantity identified with “probability” is
not influenced by the extent of our knowledge about the details of the process.

Thesis 5 Neither the value of the physical quantity identified with “prob-
ability,” nor the existence of the conditions under which this value and the
relative frequency of the corresponding event are approximately equal can be
knowable a priori.

Although standard interpretations do not provide a tenable definition of
probability, they grasp many important aspects of our intuition of probabil-
ity. It is remarkable that a physical quantity like πr2

πρ2 reflects many of these
intuitive features:

1. Like classical probability, in some sense, it reflects the ratio of
favourable cases to the number of equally possible cases.

2. Like propensity, a) it is meaningful and has a certain value in each
individual experiment, b) in some sense it expresses the “measure of
the tendency” of the whole system to behave in a certain way, 3) in
general, it has nothing to do with relative frequencies.

3. Under suitable circumstances, however, it is approximately equal to the
relative frequency measured during the sequential repetitions of the ex-
periment. There are no general conditions ensuring such a relationship;
it depends on the particular physical conditions in the given particular
context. In our example, we may know—as a fact of kinematics—that
equation (11) holds. In this case, the truths about the normalised
measure µ(...) = area of ...

πρ2 are in correspondence with the truths about

the corresponding relative frequencies N(...)
N . This fact can explain and

justify the standard rules of statistical practice; more exactly, can ex-
plain why these rules are applicable in the given case. For, consider
the following claims:

(T) There are such things as the probabilities of events. These prob-
abilities are normalised measures satisfying the Kolmogorov ax-
ioms. The whole system of conditions are such that the values of
these measures are equal to the corresponding relative frequen-
cies.

(N) There are no such things as the probabilities of events. “Proba-
bilities” are normalised measures consisting of ordinary physical
quantities. These measures satisfy the Kolmogorov axioms. The
whole system of conditions are such that the values of these mea-
sures are equal to the corresponding relative frequencies.
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If the traditional thesis (T) implies and explains the standard rules of statis-
tical practice, then the ‘no-probability’ thesis (N) also implies and explains
the same rules of statistical practice. In our example, one can imagine a
situation when we cannot measure the size of the balloon. Given, however,

that condition (11) holds, we can ascertain
(

p(A)
def

=
)

πr2

πρ2 (that is, the size

of the balloon) by measuring the relative frequency N(A)
N . Moreover, the

statistician may apply, for example, the method of “random sampling”, given
that the sampling, as a real physical process, is such that the uniform distri-
bution of the samples in the large ensemble is ensured. What is new in the
‘no-probability’ approach is that we do not justify these methods by saying
that “the probability of every direction is the same” or “each element of the
ensemble is selected with equal probability”, etc. Because we deny that there
are such things as probabilities. Instead, we are committed at real physical
things like πr2

πρ2 , N(A)
N (on finite ensembles), kinematical conditions ensuring

the uniform distribution of shots, physical conditions providing the uniform
distribution of the selected samples in the larger ensemble, etc. And the
facts about these real physical things provide enough reason to apply the
statistical methods, whenever these methods are applicable.

So far so good. It seems we must, in every context, manifest a physical
quantity that corresponds to “probability” in the given context. In this way
we can clarify how we should understand expressions like (7), (1), and (2).
But how should we understand expressions like (3) and (4)?

Let us continue our above example. Assume we know that r = 1
2ρ,

therefore

p(A)
def

=
πr2

πρ2
=

1
4

(12)

In brief,

p(A) =
1
4

(13)

That is, (13) is just an incomplete formulation of (12). Statement (13) in
itself is completely meaningless, for “p(A)” on the left hand side has no
meaning.

Consider statement (4). In order to make sense of it, we must assume
that there exists a physical quantity X corresponding to “probability” in the
given context, such that

p(H)
def

= X =
1
2

(14)

Although the system in question, the coin together with its environment, is
a very complex physical system, we may have a good intuition about the
system’s phase space and the phase space regions corresponding to events
Heads and Tails, etc. So we can imagine what kind of physical quantity X
might be. On this intuitive level, without knowing any details of the system’s
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dynamics, we have enough reason to apply some symmetry principles, and
conclude (with the hypothesis) that X = 1

2 .
Although, the physical quantity X, in general, has nothing to do with

relative frequency of getting Heads, the conditions of the sequential repe-
titions of the coin-flip can be such that X ≈ N(H)

N . And of course, this
provides a possibility to test our hypothesis that X = 1

2 . This is, however,
not important. Again, what is important is that (4) is meaningless in itself;
it must be understood in the form of (14), where X is an ordinary physical
quantity.

The meaning of (3) is much less clear. If we take it as a serious probabilis-
tic assertion, then we have to assume that the meteorologist has a (physical)
theory on which assertion (3) is based. That is, again,

p(raining)
def

= X = 0.8

for some physical quantity X. In practice, however, the meteorologist does not
necessarily have such a theory with such an X, but (s)he simply asserts the
statistical fact that the relative frequency of raining in similar situations, in
the past, was 0.8. That is to say, this is not an assertion about “probability”
of raining—taking into account Stipulation (B).

A problem

Let us consider again the quantum mechanical expression (9). First sight it
is a correct definition of “probability” on the left hand side, just like in cases
of (8) and (10). But, on the right hand side, “tr

(
P̂aŴ

)
” itself is not a well

defined physical quantity having independent empirical meaning. For we
can ascertain the state operator Ŵ only by measuring many different “prob-
abilities” like p(a). But, what is “probability” here? One might think that
the value of “probability” can be ascertained by measuring relative frequency,
even if we do not know what “probability” exactly is. This is the case, indeed,
if we may assume that “probability” is something approximately equal to rel-
ative frequency. In quantum mechanics, however, we have no justification
for such an assumption whatsoever!

There are two possible reactions to this situation: 1) We can take the po-
sition that “probability” is an inappropriate concept for quantum mechanics,
and the statistical rules of quantum mechanics are nothing but connections
between relative frequencies (on finite samples) relative to different measure-
ment setups. 2) We can try to figure out what kind of physical quantity is
lurking behind “tr

(
P̂aŴ

)
”, that is, what kind of non-probabilistic mean-

ing can be assigned to wave function—just like in Bohmian mechanics or in
quantum field theory.
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